skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Osborn, Kaden"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This study investigates the facile hydride synthesis method guided by theoretical predictions to explore the K–T–Bi (T = Zn, Cd) phase spaces. Using an adaptive genetic algorithm (AGA) and density functional theory (DFT), candidate compositions are identified for experimental validation via a facile hydrides route, permitting experimental screening of K–Zn–Bi and “empty” K–Cd–Bi systems. The previously reported KZnBi and KZn2Bi2are synthesized alongside newly discovered KCdBi and KCd2Bi2. While the AGA and DFT predict the stability of these compounds, structural predictions align with the experiment only for KZnBi and KZn2Bi2. Single‐crystal X‐ray structure refinements confirm that KZnBi and KZn2Bi2adopt the hexagonal ZrBeSi‐ and tetragonal ThCr2Si2‐structure types, respectively. KCdBi has tetragonal PbClF‐structure type and KCd2Bi2belongs to the ThCr2Si2‐structure type. A trend based on the ratio of the metal ionic radii allows to rationalize variation in the structure types within theATBi family (A = Li–Cs), correctly identifying KCdBi as isostructural to NaZnBi. Thermal stability studied by high‐temperature powder X‐ray diffraction reveals that Zn‐containing compounds melt at higher temperatures (821 K for KZn2Bi2) than Cd‐containing KCd2Bi2(635 K). This study highlights the efficacy of combining rapid synthesis techniques with predictive modeling, though structural predictions show some limitations in accuracy. 
    more » « less